

Genetics of obesity and the Avon Longitudinal Study of Parents and Children

Nic Timpson

MRC CAITE Centre Department of Social Medicine University of Bristol (UK)

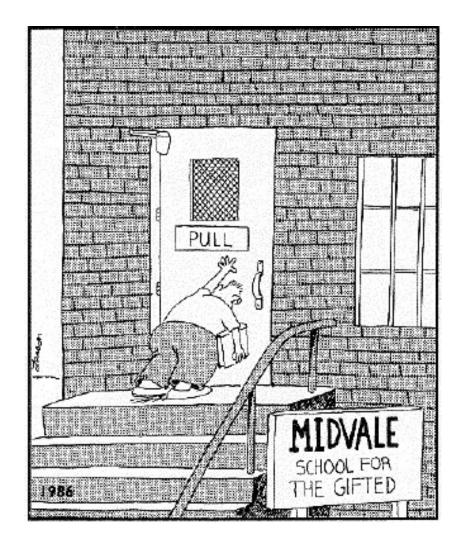
ALSPAC, what is it and what is is indicative of?

The role of environment in genetic studies:

- Removal of unwanted variation
- All genetic effects are subject to environment
- More formal gene/environment interactions

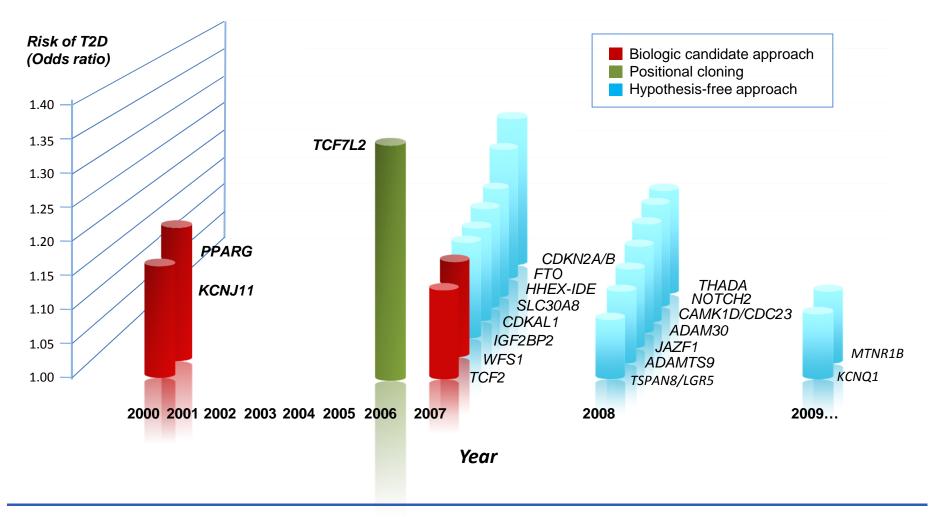
Limitations?

ALSPAC, what is it and what is is indicative of?

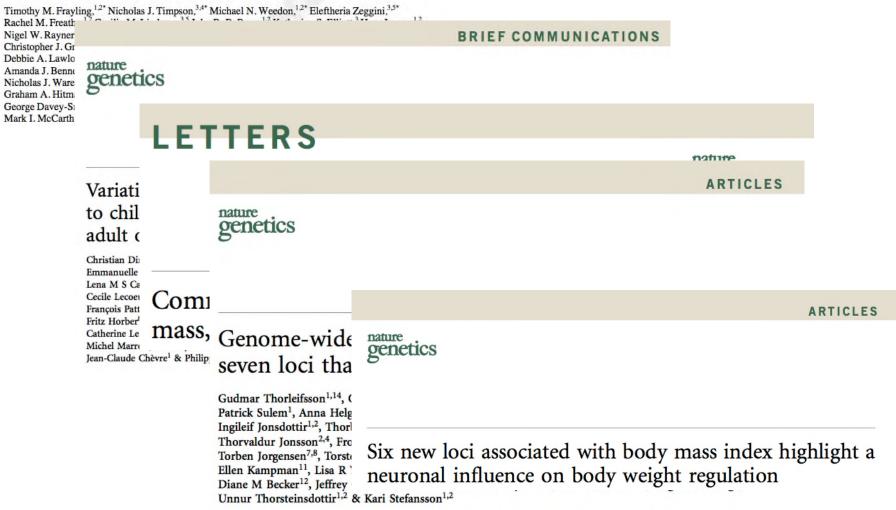

The role of environment in genetic studies:

- Removal of unwanted variation
- All genetic effects are subject to environment
- More formal gene/environment interactions

Limitations?


"Step change?!"

The Genome-Wide Association Study


MRC Centre for Causal Analyses in Translational Epidemiology

Sciencexpress

Report

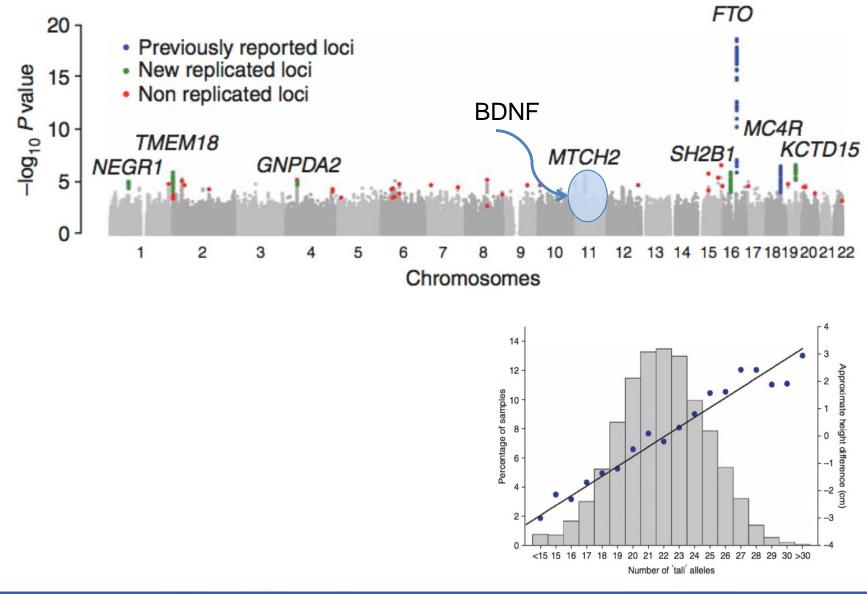
A Common Variant in the *FTO* Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity



Analyses in Translational Epidemiology

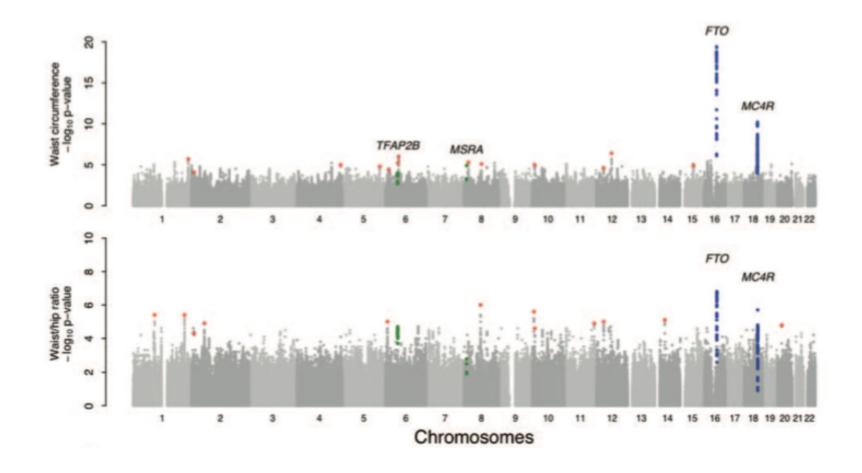
Reference number	Gene	Discovery effort	Function
rs9939609	FTO†	Frayling et al 2007	Hypothalamic regulation of appetite?
rs17782313	MC4R	Loos et al 2008 (GIANT_1)	Immediate function unknown – total size (really MC4R?)
rs6548238	TMEM18*	Willer et al 2008 (GIANT_2)	Highly expressed in the brain – CNS function/weight regulation?
rs10938397	GNPDA2	Willer et al 2008 (GIANT_2)	Highly expressed in the brain – CNS function/weight regulation?
rs7498665	SH2B1*	Willer et al 2008 (GIANT_2)	Highly expressed in the brain – CNS function/weight regulation?
rs10838753	MTCH2*	Willer et al 2008 (GIANT_2)	Highly expressed in the brain – CNS function/weight regulation?
rs11084753	KCTD15*	Willer et al 2008 (GIANT_2)	Highly expressed in the brain – CNS function/weight regulation?
rs2815752	NEGR1*	Willer et al 2008 (GIANT_2)	Highly expressed in the brain – CNS function/weight regulation?
rs6265	BDNF	Thorleifsson et al (DeCode)	Brain derived neurotrophic factor - mainly been associated with neurological and psychiatric disorders, although recent candidate gene studies have suggested its role in eating behavior

† Also reported by Dina et al NG 2007, * Reported simultaneously by Thorleifsson et al NG 2008

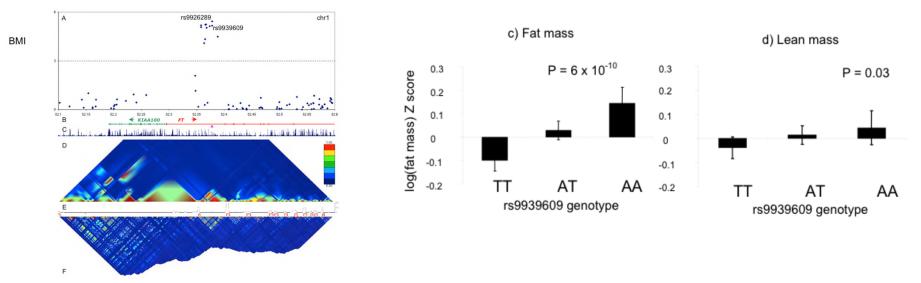

GIANT_2 (n~32,000 & 59,000)

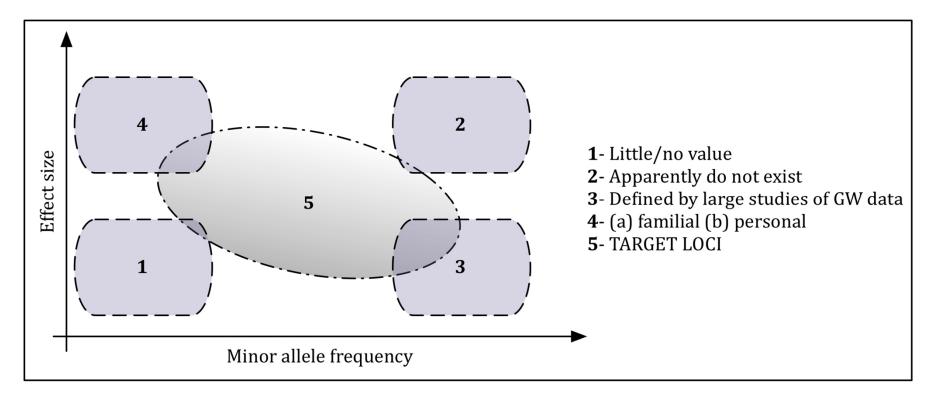
Centre for Causal

Epidemiology


MRC

Analyses in Translational


Power in consortia versus other strategies


BUT, are these "genes for obesity"?

Genetic architecture and syndromic obesity

Monogenic obesity exists – rare, familial, mutations in POMC/Leptin/brain derived Neurotrophic factor/*MC4R*

However critically different in architecture to that interrogated by recent studies

ALSPAC home Contacts

Working towards a better life for future generations

Welcome

The Avon Longitudinal Study of Parents and Children (ALSPAC) which is also known as Children of the 90s - is a long-term health research project.

http://www.bristol.ac.uk/alspac/

MRC Centre for Causal Analyses in Translational Epidemiology

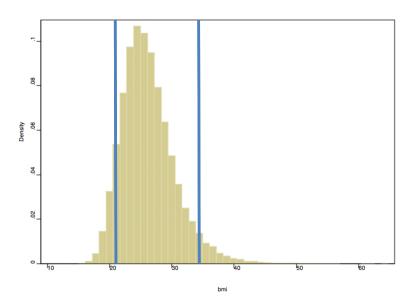
ALSPAC, what is it and what is is indicative of?

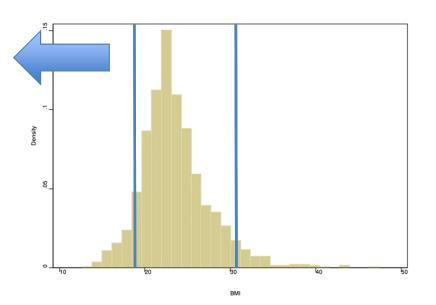
The role of environment in genetic studies: *epidemiology*

- Removal of unwanted variation
- All genetic effects are subject to environment
- More formal gene/environment interactions

Limitations?

Role of environment in genetic studies of obesity


Environment in genetic studies and the impact of "obesogenic environments"?

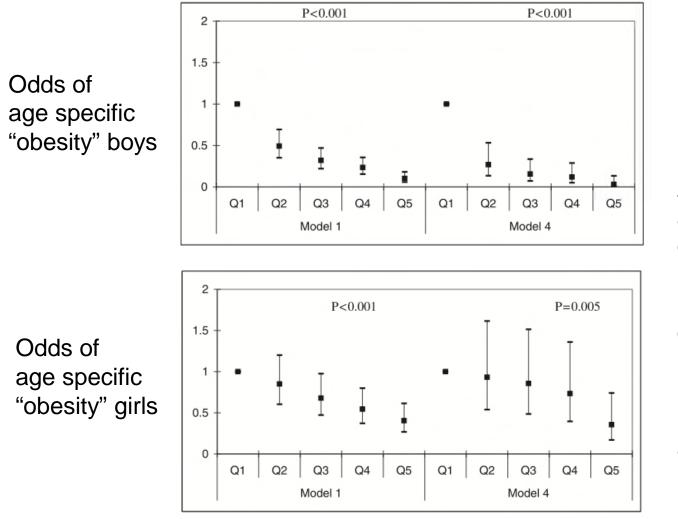


Anthropometric data

Comparative BMI

Copenhagen

Mean BMI ~26kg/m² 5th/95th percentiles: ~20kg/m² & ~34kg/m²


The Solomons

Mean BMI ~23.5kg/m² 5th/95th percentiles: ~18kg/m² & ~31kg/m²

Centre for Causal Analyses in Translational Epidemiology

ALSPAC - activity & BMI

Activity objectively assessed from records of actigraph wearing.

Data summarised in quintile of counts per minute

Findings consistent across fat mass (DXA)

Ness et al PLoS Med 2007

N>2500, age 12yrs

ALSPAC, what is it and what is is indicative of?

The role of environment in genetic studies:

- Removal of unwanted variation
- All genetic effects are subject to environment
- More formal gene/environment interactions

Limitations?

MRC Centre for Causal Analyses in Translational Epidemiology

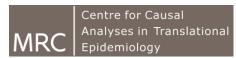
Clustered Environments and Randomized Genes: A Fundamental Distinction between Conventional and Genetic Epidemiology

George Davey Smith^{1,2*}, Debbie A. Lawlor^{1,2}, Roger Harbord¹, Nic Timpson^{1,2}, Ian Day^{1,2}, Shah Ebrahim³

"...large excess of observed over expected associations among the nongenetic variables indicates that many nongenetic modifiable factors occur in clusters"

"Researchers doing observational studies always try to adjust for confounding but this result suggests that this adjustment will be hard to do, in part because it will not always be clear which factors are confounders"

"...the lack of a large excess of observed over expected associations among the genetic variables (and also among genetic variables paired with nongenetic variables) indicates that little confounding is likely to occur"


Mendelian Randomisation

Davey Smith & Ebrahim BMJ (2005)

Adiposity/BMI Metabolic Phenotypes

ALSPAC, what is it and what is is indicative of?

The role of environment in genetic studies:

- Removal of unwanted variation
- All genetic effects are subject to environment
- More formal gene/environment interactions

Limitations?

FTO – An effect through appetite?

The fat mass- and obesity-associated locus and dietary intake in children $^{1\mathchar`-3}$

Nicholas J Timpson, Pauline M Emmett, Timothy M Frayling, Imogen Rogers, Andrew T Hattersley, Mark I McCarthy, and George Davey Smith

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

An Obesity-Associated FTO Gene Variant and Increased Energy Intake in Children

Joanne E. Cecil, Ph.D., Roger Tavendale, Ph.D., Peter Watt, Ph.D., Marion M. Hetherington, Ph.D., and Colin N.A. Palmer, Ph.D.

ABSTRACT

Sciencexpress

Report

The Obesity-Associated *FTO* Gene Encodes a 2-Oxoglutarate–Dependent Nucleic Acid Demethylase

Thomas Gerken,¹ Christophe A. Girard,^{2,9} Yi-Chun Loraine Tung,^{3,9} Celia J. Webby,^{1,10} Vladimir Saudek,^{3,10} Kirsty S. Hewitson,^{1,4,10} Giles S. H. Yeo,^{3,10} Michael A. McDonough,^{1,10} Sharan Cunliffe,^{4,10} Luke A. McNeill,^{1,3,10} Juris Galvanovskis,^{5,10} Patrik Rorsman,⁵ Peter Robins,⁶ Xavier Prieur,³ Anthony P. Coll,³ Marcella Ma,³ Zorica Jovanovic,³ I. Sadaf Farooqi,³ Barbara Sedgwick,⁶ Inês Barroso,⁷ Tomas Lindahl,⁶ Chris P. Ponting,^{8,11,12*} Frances M. Ashcroft,^{2,11,12*} Stephen O'Rahilly,^{3,12*} Christopher J. Schofield^{1,11,12*}

Am J Physiol Regul Integr Comp Physiol 294: R1185–R1196, 2008. First published February 6, 2008; doi:10.1152/ajpregu.00839.2007.

Regulation of Fto/Ftm gene expression in mice and humans

George Stratigopoulos,¹ Stephanie L. Padilla,¹ Charles A. LeDuc,¹ Elizabeth Watson,¹ Andrew T. Hattersley,⁴ Mark I. McCarthy,^{2,3} Lori M. Zeltser,¹ Wendy K. Chung,¹ and Rudolph L. Leibel¹ ¹Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, New York; ²Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, UK; ³Wellcome Trust Centre for Human Genetics, University of Oxford, UK; and ⁴Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK

Submitted 20 November 2007; accepted in final form 31 January 2008

Analyses in Translational Epidemiology

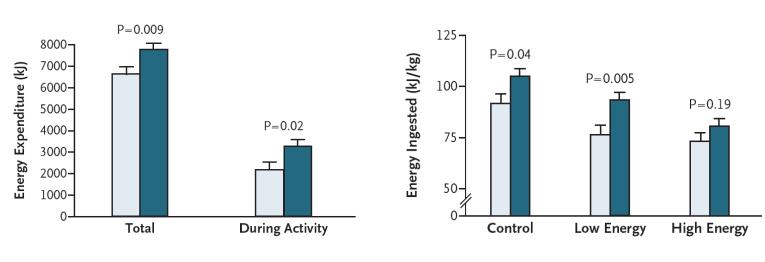
The fat mass- and obesity-associated locus and dietary intake in children¹⁻³

Nicholas J Timpson, Pauline M Emmett, Timothy M Frayling, Imogen Rogers, Andrew T Hattersley, Mark I McCarthy, and George Davey Smith

Dietary record data (3-4 day records) *Corrected for mis-reporting *Adjusted for BMI

Energy intake	π	AT	AA	Kcal/dat	
	1732.12	1750.21	1785.31	p<0.05	
	(1730.15, 1734.08)	(1748.25, 1752.18)	(1783.34, 1787.29)		

Persons carrying minor variants at rs9939609 were consuming more *fat and total energy* than were those not carrying such variants


This difference was not simply dependent on having higher average BMIs

Association between the A allele at the *FTO* rs9939609 variant and energy balance


TT A/X

Scottish school children (N=76; age 4-10 yrs)

Energy ingested after different energy intake premeal loads & INDEPENDENT of fat or lean mass

Cecil et al. NEJM (2008)

Indirect calorimetry & INDEPENDENT

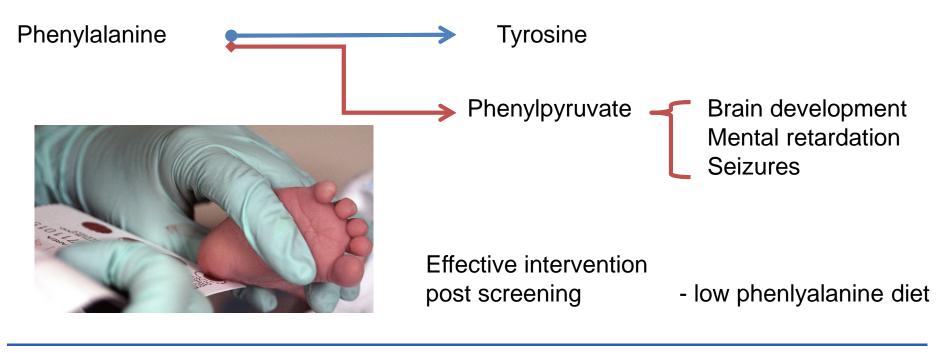
of BMI or lean mass

ALSPAC, what is it and what is is indicative of?

The role of environment in genetic studies:

- Removal of unwanted variation
- All genetic effects are subject to environment
- More formal gene/environment interactions

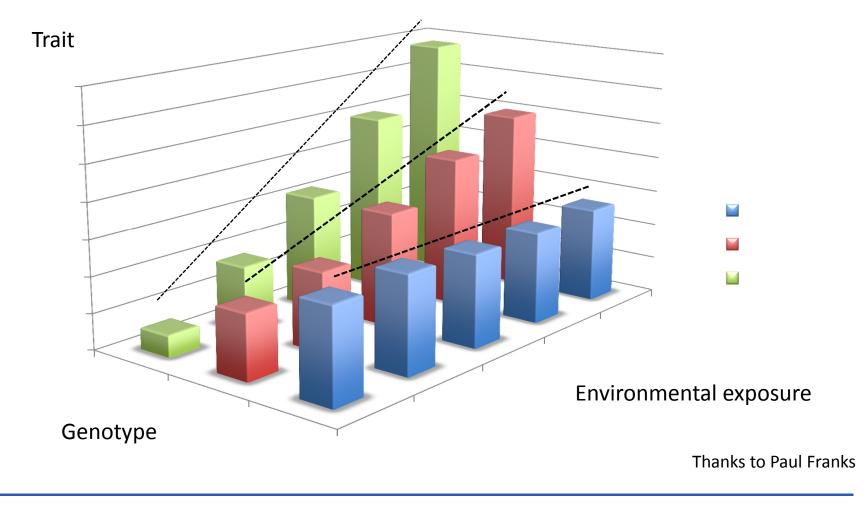
Limitations?

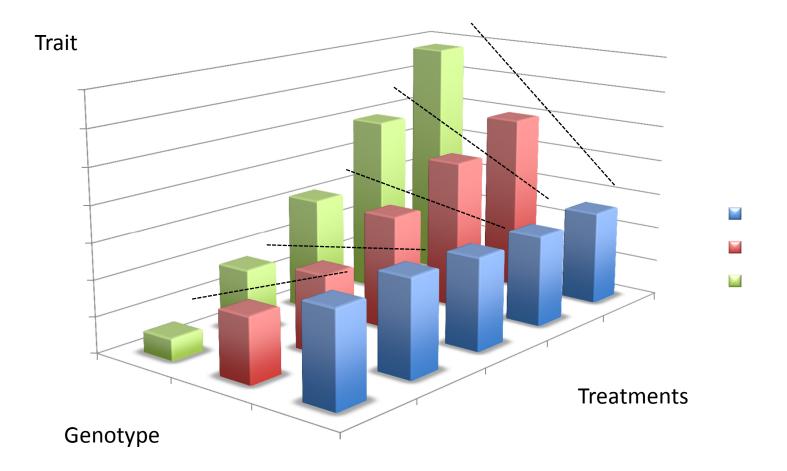


What do we mean by gene/environment interaction?

Classic example:

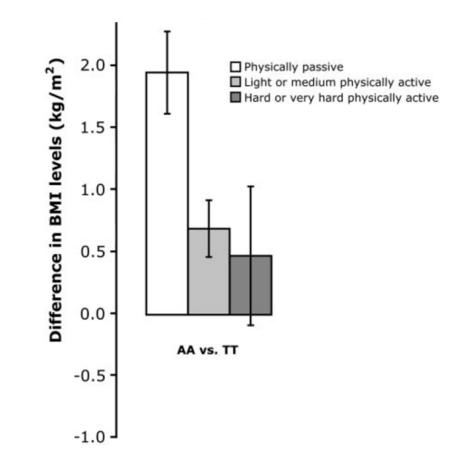
Phenylketonuria


Autosomal recessive disorder characterised by a deficiency in the hepatic enzyme phenylalanine hydroxylase.


Genetic effects on traits that differ across environmental contexts

MRC Centre for Causal Analyses in Translational Epidemiology

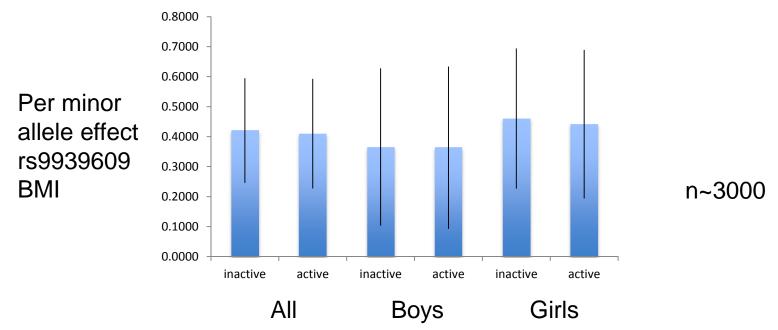
Treatment effects that across genotypes at a given locus



BRIEF REPORT

Low Physical Activity Accentuates the Effect of the *FTO* rs9939609 Polymorphism on Body Fat Accumulation

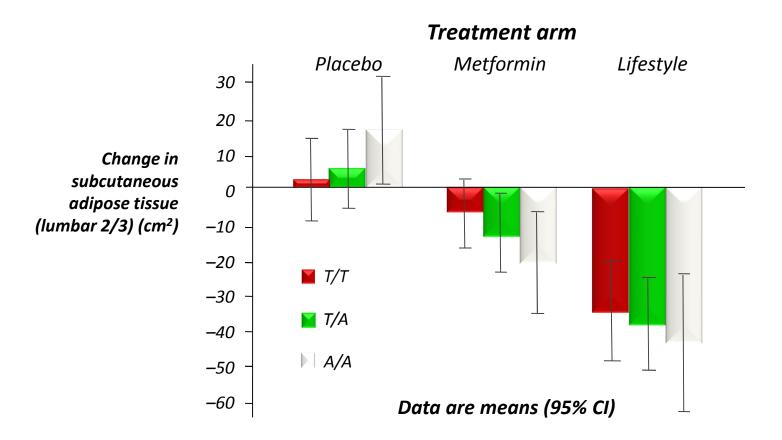
Camilla H. Andreasen,¹ Kirstine L. Stender-Petersen,¹ Mette S. Mogensen,¹ Signe S. Torekov,¹ Lise Wegner,¹ Gitte Andersen,¹ Arne L. Nielsen,¹ Anders Albrechtsen,² Knut Borch-Johnsen,^{1,3,4} Signe S. Rasmussen,¹ Jesper O. Clausen,¹ Annelli Sandbæk,⁵ Torsten Lauritzen,⁵ Lars Hansen,⁶ Torben Jørgensen,³ Oluf Pedersen,^{1,4} and Torben Hansen¹



Current efforts:

Large consortium based approach concerned with the interaction betwee ACTIVITY and the effects of variation at *FTO*.

Led by the MRC Cambridge (Tuomas Kilpelainen) who will extend this to genomewide analyses considering the mediating effects of activity on BMI associations.



Centre for Causal Analyses in Translational Epidemiology

Diabetes Prevention Program

FTO gene x treatment interaction on adiposity

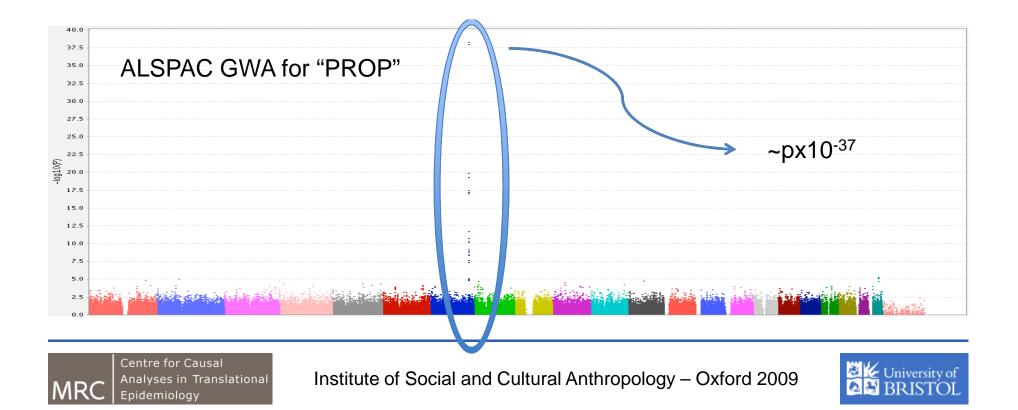
Franks PW, et al. (Diabetologia, 2008)

ALSPAC, what is it and what is is indicative of?

The role of environment in genetic studies:

- Removal of unwanted variation
- All genetic effects are subject to environment
- More formal gene/environment interactions

Limitations?



Dependence on measurement

How equipped are we to assess genotypic variation reliably?

Era of outsourcing/DNA chip technology and high throughput technologies. *(cost/accuracy/reliability/rapidity)*

Discussion points

What can be done with associations of common genetic variation with obesity/BMI?

How can we better incorporate an appreciation of environmental context into genetic studies of obesity/adiposity?

Epigenetics

Do population specific patterns exist and what are their (i) clinical implications and

(ii) genetic/environmental underpinnings?

What are the next steps in the analysis of genetic data and the implications of these? "Next Generation Sequencing"

How can rare and common genetic variants associated with BMI/obesity/adiposity (or risk of these features) be used to unpick the so called "obesogenic" environment?

